Aller directement au contenu
Format : Stage pratique
Niveau Fondamentaux
Répartition du temps : 60% exposés
30% pratique
10% échanges

La formation en détails

Description

Surfant sur la vague du Big Data, le data scientist joue un rôle clé dans la valorisation de données. Au-delà des paillettes, quel est son rôle, ses outils, sa méthodologie, ses "tips and tricks" ? Venez le découvrir au travers de cette initiation à la Data Science délivrée par des data scientists renommés qui vous apporteront l'expérience des compétitions de Data Science et leurs riches retours d'expérience des modèles réels qu'ils mettent en place chez leurs clients.

Objectifs

  • Découvrir le monde de la Data Science et les grandes familles de problèmes
  • Savoir modéliser un problème de Data Science
  • Créer ses premières variables
  • Constituer sa boite à outils de data scientist

Public cible

  • Analyste
  • Statisticien
  • Architecte
  • Développeur

Prérequis

Connaissances de base en programmation ou scripting. Quelques souvenirs de statistiques sont un plus.

Modalités pédagogiques

Formation avec apports théoriques, échanges sur les contextes des participants et retours d'expérience pratique du formateur, complétés de travaux pratiques et de mises en situation.

Profil du formateur

Toutes nos formations sont animées par des consultants-formateurs expérimentés et reconnus par leurs pairs.

Modalités d'évaluation et de suivi

L'évaluation des acquis se fait tout au long de la session au travers des ateliers et des mises en pratique.

Afin de valider les compétences acquises lors de la formation, un formulaire d'auto-positionnement est envoyé en amont et en aval de celle-ci.

Une évaluation à chaud est également effectuée en fin de session pour mesurer la satisfaction des stagiaires et un certificat de réalisation leur est adressé individuellement.

Programme détaillé

Jour 1

 

INTRODUCTION AU BIG DATA

Qu'est-ce-que le Big Data ?

L'écosystème technologique du Big Data

 

INTRODUCTION À LA DATA SCIENCE

Le vocabulaire d'un problème de Data Science

De l'analyse statistique au machine learning

Overview des possibilités du machine learning

 

MODÉLISATION D'UN PROBLÈME

Input / ouput d'un problème de machine learning

Mise en pratique "OCR"

  • Nous verrons comment modéliser le problème de la reconnaissance optique de caractère

 

IDENTIFIER LES FAMILLES D'ALGORITHMES DE MACHINE LEARNING

Analyse supervisée

Analyse non supervisée

Classification / régression

 

SOUS LE CAPOT DES ALGORITHMES : LA RÉGRESSION LINÉAIRE

Quelques rappels : fonction hypothèse, fonction convexe, optimisation

La construction de la fonction de coût

Méthode de minimisation : la descente de gradient

 

SOUS LE CAPOT DES ALGORITHMES : LA RÉGRESSION LOGISTIQUE

Frontière de décision

La construction d'une fonction de coût convexe pour la classification

 

LA BOITE À OUTIL DU DATA SCIENTIST

Introduction aux outils

Introduction à python, pandas et scikit-learn

 

CAS PRATIQUE N°1 : "PRÉDIRE LES SURVIVANTS DU TITANIC"

Exposé du problème

Première manipulation en python

 

Jour 2

 

RAPPELS ET RÉVISION DU JOUR 1

 

QU'EST-CE QU'UN BON MODÈLE ?

Cross-validation

Les métriques d'évaluation : precision, recall, ROC, MAPE, etc

 

LES PIÈGES DU MACHINE LEARNING

Overfitting ou sur-apprentissage

Biais vs variance

La régularisation : régression Ridge et Lasso

 

DATA CLEANING

Les types de données : catégorielles, continues, ordonnées, temporelles

Détection des outliers statistiques, des valeurs aberrantes

Stratégie pour les valeurs manquantes

Mise en pratique : "Remplissage des valeurs manquantes"

 

FEATURE ENGINEERING

Stratégies pour les variables non continues

Détecter et créer des variables discriminantes

 

CAS PRATIQUE N°2 : "PRÉDIRE LES SURVIVANTS DU TITANIC"

Identification et création des bonnes variables

Réalisation d'un premier modèle

Soumission sur Kaggle

 

DATA VISUALISATION

La visualisation pour comprendre les données : histogramme, scatter plot, etc

La visualisation pour comprendre les algorithmes : train / test loss, feature importance, etc

 

INTRODUCTION AUX MÉTHODES ENSEMBLISTES

Le modèle de base : l'arbre de décision, ses avantages et ses limites

Présentation des différentes stratégies ensemblistes : bagging, boosting, etc

Mise en pratique : "Retour sur le titanic"

  • Utilisation d'une méthode ensembliste sur la base du précédent modèle

 

APPRENTISSAGE SEMI-SUPERVISÉ

Les grandes classes d'algorithmes non supervisées : clustering, PCA, etc

Mise en pratique : "Détection d'anomalies dans les prises de paris"

  • Nous verrons comment un algorithme non supervisé permet de détecter des fraudes dans les prises de paris

 

Jour 3

 

RAPPELS ET RÉVISIONS

Synthèse des points abordés en journées 1 et 2

Approfondissement des sujets sélectionnés avec l'intervenant

 

MISE EN PRATIQUE

Le dernier jour est entièrement consacré à des mises en pratique

 

SÉLECTION ET PARTICIPATION À UNE COMPÉTITION

Le formateur sélectionnera une compétition en cours sur Kaggle ou datasciencenet qui sera démarrée en jour 3 par l'ensemble des participants

Ce qu'en disent les participants

4.50 / 5
Satisfaction moyenne
Sur la base de 25 avis, collectés en fin de formation durant les 12 derniers mois.
100 %
recommandent cette formation
Sur la base de 25 avis, collectés en fin de formation durant les 12 derniers mois.

Nos autres formations du domaine « Data Science » Toutes les formations du domaine

DSNVA Data Science : niveau avancé
Approfondir des concepts avancés de machine learning et enrichir sa boîte à outils de Data Scientist
Durée : 21 h / 3 j
Avancé
 
 
 
 
Prochaine session : 25 mars 2024
NLPSR Intelligence Artificielle : Natural Language Processing (NLP) & Speech Recognition
Devenir un expert du langage écrit et parlé avec python
Durée : 21 h / 3 j
Avancé
 
 
 
 
Prochaine session : 27 mai 2024
DSETI Data Science : s’approprier les bonnes pratiques de l'Intelligence Artificielle Responsable
Appréhender les enjeux éthiques et favoriser l'interprétabilité et la vigilance des modèles de Machine Learning
Durée : 7 h / 1 j
Fondamentaux
 
 
 
 
Prochaine session : 04 avril 2024
GREAI Green AI : l’intelligence artificielle responsable
Concevoir des modèles de Machine Learning en visant un équilibre entre performance et frugalité
Durée : 14 h / 2 j
Avancé
 
 
 
 
Prochaine session : 20 juin 2024
DSGDP Cadrage et pilotage d'un projet de Data Science
Comprendre les spécificités d'un projet de Data Science pour mieux le piloter de la conception au delivery
Durée : 14 h / 2 j
Avancé
 
 
 
 
Prochaine session : 27 mai 2024
DSARC Architecture des données : stockage et accès
Appréhender et prendre en main les nouvelles architectures de données : Hadoop, NoSQL, Spark
Durée : 21 h / 3 j
Fondamentaux
 
 
 
 
Prochaine session : 13 mai 2024

Découvrez les profils métiers associés à cette formation

Data Analyst
La business intelligence au profit d'une prise de décision éclairée
Data Scientist
La puissance prédictive au service des orientations stratégiques
Machine Learning Engineer
L'ingénierie logiciel au profit de vos projets de Data Science

Besoin d'aide pour trouver votre formation ?

Contactez-nous

Sessions & Inscriptions

Session partagée avec d'autres organisations

Prochaines sessions
  • du 18 au 20/03/2024
    Présentiel, Paris
    Session confirmée ✅
    2 500,00 € HT
  • du 24 au 26/06/2024
    Présentiel, Paris
    2 500,00 € HT
  • du 18 au 20/11/2024
    Présentiel, Paris
    2 500,00 € HT
Durée
21 h / 3 j

Demander un devis Nous contacter
Télécharger le programme

Organiser une session dédiée à votre organisation

Durée
21 h / 3 j

Vous avez plusieurs collaborateurs à former ?

Cette formation peut être organisée
sous la forme de sessions dédiées
aux membres de votre organisation.

Demander un devis Nous contacter Télécharger le programme

Personnaliser cette formation

Cette formation vous intéresse
et vous souhaitez l'adapter pour
vos collaborateurs ?

Nos formateurs et notre équipe pédagogique sont à
votre disposition pour en discuter
et vous proposer un programme sur-mesure.

Nous contacter Télécharger le programme

OCTO Academy respecte votre vie privée

Ce site web stocke des informations vous concernant via le dépôt de cookie afin de mesurer l’audience du site. Ces données de navigation sont anonymisées.

En cliquant sur « OK pour moi », vous manifestez votre consentement pour le dépôt de ces cookies.

Lire la politique de confidentialité

À propos des cookies

Sur ce site, nous utilisons des cookies pour mesurer notre audience, entretenir la relation avec vous et vous adresser de temps à autre du contenu qualitif ainsi que de la publicité. Vous pouvez sélectionner ici ceux que vous autorisez à rester ici.

Cookies